Asymptotic estimation of Gaussian quadrature error for a nonsingular integral in potential theory
نویسنده
چکیده
This paper considers the n-point Gauss-Jacobi approximation of nonsingular integrals of the form ∫ 1 −1 μ(t)φ(t) log(z− t) dt, with Jacobi weight μ and polynomial φ, and derives an estimate for the quadrature error that is asymptotic as n → ∞. The approach follows that previously described by Donaldson and Elliott. A numerical example illustrating the accuracy of the asymptotic estimate is presented. The extension of the theory to similar integrals defined on more general analytic arcs is outlined.
منابع مشابه
Quadrature methods for highly oscillatory singular integrals
We study asymptotic expansions, Filon-type methods and complex-valued Gaussian quadrature for highly oscillatory integrals with power-law and logarithmic singularities. We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand, the stationary points and the endpoints of the integral. A truncated asymptotic expansion...
متن کاملComplex Gaussian quadrature for oscillatory integral transforms
The classical theory of Gaussian quadrature assumes a positive weight function. We will show that in some cases Gaussian rules can be constructed with respect to an oscillatory weight, yielding methods with complex quadrature nodes and positive weights. These rules are well suited for highly oscillatory integrals because they attain optimal asymptotic order. We show that for the Fourier oscilla...
متن کاملEfficient quadrature rules for a class of cordial Volterra integral equations: A comparative study
A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations. The equations of this class appear in heat conduction problems with mixed boundary conditions. The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes. A comparative stud...
متن کاملCALCULATION OF NON LIFTING POTENTIAL FLOW USING DESINGULARIZED CAUCHY\'S FORMULA
This paper discusses the disturbance velocity and potential as well as the total velocity formulation for non lifting potential flow problem. The problem is derived based on the Cauchy method formulation. The adding and subtracting back technique is used to desingularize the integral equations. The desingularized boundary integral equations are then discretized. The discretized equations can be...
متن کاملPerformance of Likelihood-Based Estimation Methods for Multilevel Binary Regression Models
By means of a fractional factorial simulation experiment, we compare the performance of Penalised Quasi-Likelihood, Non-Adaptive Gaussian Quadrature and Adaptive Gaussian Quadrature in estimating parameters for multi-level logistic regression models. The comparison is done in terms of bias, mean squared error, numerical convergence, and computational efficiency. It turns out that, in terms of M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 71 شماره
صفحات -
تاریخ انتشار 2002